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Abstract

This article studies the problem of transforming a process model with an arbitrary
topology into an equivalent well-structured process model. While this problem
has received significant attention, there is still no full characterization of the class
of unstructured process models that can be transformed into well-structured ones,
nor an automated method for structuring any process model that belongs to this
class. This article fills this gap in the context of acyclic process models. The
article defines a necessary and sufficient condition for an unstructured acyclic
process model to have an equivalent well-structured process model under fully
concurrent bisimulation, as well as a complete structuring method. The method
has been implemented as a tool that takes process models captured in the BPMN
and EPC notations as input. The article also reports on an empirical evaluation
of the structuring method using a repository of process models from commercial
practice.

Keywords: Process modeling, Structured modeling, Structuring, Model
equivalence, Petri net unfolding, Modular decomposition

1. Introduction

In contemporary business process modeling notations, such as the Business
Process Model and Notation (BPMN) [1] and Event-driven Process Chain
(EPC) [2], a process model is composed of nodes (e.g., tasks, events, gateways)
connected by a “flow” relation. Although these notations allow process models
to have almost any topology, it is often desirable that models abide by some
structural rules. In this respect, a well-known property of process models is
that of (well-)structuredness [3], meaning that for every node with multiple
outgoing arcs (a split) there is a corresponding node with multiple incoming
arcs (a join), and vice versa, such that the set of nodes between the split and
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Figure 1: (a) An unstructured acyclic process model, and (b) its equivalent structured version

the join forms a single-entry-single-exit (SESE) region; otherwise the process
model is unstructured. For example, Figure 1(a) shows an unstructured process
model (splits u, v and joins w, x do not have a corresponding node), while
Figure 1(b) shows an equivalent structured model. The models are captured
using BPMN language. Figure 1(b) uses short names for tasks (a, b, c, . . .), which
appear next to each task in Figure 1(a). Observe that the equivalent structured
model captures the same information about potential concurrent executions of
tasks as the unstructured model. As will be explained later, such a relation on
process models corresponds to the notion of fully concurrent bisimulation [4].

This article studies the problem of automatically transforming unstructured
process models into equivalent well-structured models. The motivations for
such a transformation are manifold. Firstly, it has been empirically shown that
structured process models are easier to comprehend and less error-prone than
unstructured ones [5]. Similarly, it has been shown in [6, 7] that structuredness
and modularity (e.g., by usage of procedures) improves software maintainability.
Thus, a transformation from an unstructured into a structured process model can
be used as a refactoring technique for increasing process model understandability.
Secondly, a number of existing process model analysis techniques only work
for structured models. For example, a method for calculating cycle time and
capacity requirements of structured process models is outlined in [8], while a
method for analyzing time constraints in structured process models is presented
in [9]. By transforming unstructured process models into structured ones, we can
extend the applicability of these techniques to a larger class of models. Thirdly,
a transformation from unstructured to structured process models can be used
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Figure 2: Overview of the proposed structuring method

to implement converters from graph-oriented process modeling languages to
structured process modeling languages, e.g., from BPMN to BPEL [10].

In the context of flowcharts without parallel splits and joins it has been
shown that any unstructured flowchart can be transformed into a structured
one [11]1. If we add parallel splits and joins, this result no longer holds: There
exist unstructured process models that do not have equivalent structured ones [3].
Several authors have attempted to classify the sources of unstructuredness in
process models [12–14] and to define automated methods for structuring process
models [15–17]. However, these methods are incomplete: There is currently no
full characterization of the class of inherently unstructured process models, i.e.,
unstructured process models that have no equivalent structured model. Also,
none of the existing structuring methods is complete. In fact, this problem has
not been fully solved even for acyclic process models. This article fills this gap.

To streamline the presentation, we make several assumptions. Firstly, we
consider process models to be composed of nodes (tasks, events, gateways) and
control flow relations. In terms of BPMN, this means that we abstract away from
other process model elements such as artifacts, annotations, associations, groups,
pools, lanes, message flows, sub-process invocations and attributes associated
with sub-process invocations, e.g., repetition. Nonetheless, the proposed method
is applicable even if these types of elements are present in the input model.
Simply put, these ancillary elements and attributes need to be moved along with
the tasks or events to which they are attached. In the same vein, we do not
distinguish between events and tasks since, for the purpose of the transformation,
both of them can be treated equally. Secondly, we consider only sound process
models [18]. This restriction is natural since soundness is a widely-accepted
correctness criterion for process models. Thirdly, we consider process models in
which every node has only one incoming or one outgoing arc. This restriction is
merely syntactical because one can trivially split a node with multiple incoming
and multiple outgoing arcs into two nodes: one node with a single outgoing
arc and the other with a single incoming arc. Finally, we do not deal with the
following BPMN constructs: or gateways, complex gateways, error events and
non-interrupting events. Lifting this latter restriction is left as future work.

Given this setting, the main contribution of the article is a method for
transforming an unstructured acyclic process model into an equivalent structured
one whenever such transformation is possible. The main steps of the method
are summarized in Figure 2. The process model is first decomposed into a

1In the case of multi-exit cycles, this transformation requires the use of “break” statements
or boolean variables in the transformed model.
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“process structure tree”: A hierarchy of so-called process components, where
each component corresponds to a SESE region. Each component can be seen
as a process model by itself and can be classified either as well-structured
or unstructured. The aim of the method is to transform every unstructured
component into an equivalent structured one, when possible. To this end, the
process component is first translated into a Petri net [19]. A technique known
as Petri net unfolding is then employed in order to discover the elementary
ordering relations that exist between tasks in the component. These ordering
relations are analyzed using a technique known as modular decomposition, which
extracts the fundamental “modules” that exist in the ordering relations graph.
We demonstrate that if the resulting modules are all of certain types, the process
component can be transformed into an equivalent structured one. Otherwise,
the process component is inherently unstructured.

This article is an extended and revised version of an earlier conference
paper [20]. The main enhancements with respect to the conference paper are the
ability to deal with process models with multiple source and multiple sink nodes,
and an empirical evaluation of the structuring method using process models
taken from industrial practice.

The remainder of the article is structured as follows: The next section defines
the notions of process model and refined process structured tree and reviews
related work. Next, Section 3 introduces a semantics of process models based
on Petri nets. Section 4 then introduces the behavioral equivalence used in this
article, viz. fully concurrent bisimulation, and shows that two acyclic process
models are equivalent under this equivalence notion if and only if they have the
same set of ordering relations. This result is used in Section 5 to characterize the
class of acyclic process models that can be structured and to define a structuring
algorithm. In Section 5, it is assumed that process models have a single source
and a single sink node. This restriction is lifted in Section 6. Section 7 presents
an empirical evaluation of the proposed structuring method on a process model
collection taken from industrial practice. Finally, Section 8 concludes the article
and outlines directions for future work.

2. Background and Related Work

In this section we introduce the notion of process model (Section 2.1) and a
technique for decomposing process models into process components (Section 2.2).
Afterwards, in Section 2.3, we analyze related work with respect to their ability
to structure different types of process components.

2.1. Process Models

As discussed in the introduction, we consider process models consisting of
tasks and gateways, as captured in the following definition.

Definition 2.1 (Process model).
A process model is a tuple W = (A,G|,G},C,A, µ), where A is a non-empty set
of tasks, or activities, G| is a set of and gateways, G} is a set of xor gateways
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(these sets are disjoint). We write G = G| ∪G} for all gateways and V = A ∪G
for all nodes of the process model. C ⊆ V × V defines the control flow. A, τ ∈ A,
is a set of names and µ ∶ A→ A is a function that assigns each task a name.

A node v ∈ V is a source node, if ●v = ∅, and it is a sink node, if v● = ∅, where ●v
stands for a set of immediate predecessors and v● stands for a set of immediate
successors of node v. As mentioned in the introduction, we assume that process
models meet certain structural requirements. Every task a ∈ A has at most one
incoming and at most one outgoing arc, i.e., ∣●a∣ ≤ 1∧∣a●∣ ≤ 1, while each gateway
is either a split or a join: A gateway g ∈ G is a split, if ∣●g∣ = 1 ∧ ∣g●∣ > 1. A
gateway g ∈ G is a join, if ∣●g∣ > 1 ∧ ∣g●∣ = 1. Source and sink nodes are tasks and
every node is on a path from some source task to some sink task.

We employ a notation similar to BPMN for visualization of process mod-
els. Figure 1(a) shows a process model which contains eight tasks, i.e., A =
{i, a, b, c, d, e, f, o}. Note that i and o are silent tasks, i.e., µ(i) = τ = µ(o). We
visualize silent tasks as start, intermediate, or end events in BPMN. Note that
we use silent tasks for technical purposes only, e.g., representation of source and
sink tasks. An observable task is drawn as a rectangle that has rounded corners
with its name inside. Gateways are visualized as diamonds: Gateways of type
xor , or exclusive gateways, use a marker which is shaped like an “×” inside the
diamond shape. Gateways of type and , or parallel gateways, use a marker which
is shaped like a “+” inside the diamond shape. The set {t, u, v,w, x, y, z} is the
set of gateways of the process model in Figure 1(a). Gateways t, w, x, and z
are exclusive, while gateways u, v, and y are parallel. Gateways t, u, and v are
splits, while gateways w, x, y, and z are joins. Finally, control flow arcs are
drawn as directed edges between the nodes of the process model.

2.2. Process Components
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Figure 3: The (simplified) RPSTs of pro-
cess models in Figure 1

The starting point of the proposed
structuring method is a parsing technique
for process models presented in [21] (origi-
nally proposed in [22]). This parsing tech-
nique decomposes a process model into
SESE regions, hereby called process com-
ponents. In other words, a process com-
ponent is a subset of arcs of a process
model such that the subgraph induced by
these arcs has a single entry node and
a single exit node. These two nodes are
called boundary nodes as they connect the
component with the rest of the model. A
process component is canonical, if it does not overlap (on the set of arcs) with any
other process component, meaning that any two canonical process components
are either disjoint or one is contained in the other. Canonical process components
naturally form a hierarchy, leading to the following definition.
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Definition 2.2 (Refined process structure tree).
The refined process structure tree (RPST ) of a process model is the set of all its
canonical process components.

The RPST of a given process model is unique and can be computed in linear
time [21]. Figure 1(a) and Figure 1(b) show the RPSTs in the form of dotted
boxes superposed on the process models. For the sake of presentation, the same
RPSTs are depicted as trees in Figure 3. Every region inside a dotted box
defines a canonical process component, which is composed of arcs that are inside
or intersect the region. For instance, component B1 in Figure 1(a) has two
boundary nodes: t and z. Node t is the entry and node z is the exit of the
component. According to [21–23], every canonical process component belongs to
one out of four structural classes.

Definition 2.3 (Trivial, Polygon, Bond, Rigid).
Let C be a process component of a process model.

○ C is a trivial component, iff C is singleton, i.e., C contains a single arc.
○ C is a polygon component, iff there exists a sequence (r0, . . . , rn), n ∈ N,

of canonical components of the process model, such that C = ⋃i=ni=0 ri, the
entry of C is the entry of r0, the exit of C is the exit of rn, and the exit of
rj is the entry of rj+1, 0 ≤ j < n.

○ C is a bond component, iff there exists a set R of canonical components of
the process model, such that C = ⋃r∈R r and every component in R has
the same boundary nodes as C.

○ C is a rigid component, iff C is neither a trivial, nor a polygon, nor a bond
component.

For instance in Figure 1(a), polygon P1 is the root of the RPST and corresponds
to the whole process model. Polygon P1 is composed of bond B1 and two trivial
components {(i, t)} and {(z, o)}. In turn, bond B1 contains polygons P2 and
P3. Observe that trivial components and polygons that are composed of two
trivial components are not explicitly visualized for simplicity reasons – neither
in Figure 1, nor in Figure 3. Note also that names of components hint at their
structural class, e.g., P1 is a polygon, B1 is a bond, and R1 is a rigid component.

The RPST provides a basis for defining the notion of well-structuredness.

Definition 2.4 (Well-structured process model).
A process model is (well-)structured, if and only if its RPST contains no rigid
process component; otherwise the process model is unstructured.

In a process model that satisfies the condition in the above definition, every split
has a corresponding join so that the region between the split and the join is a
SESE region, and vice versa (by virtue of the definition of a trivial, polygon,
and bond component). Every rigid process component contains a node, either a
split or a join, which has no corresponding node to define a SESE region.

The process model in Figure 1(a) contains rigid R1 and is, therefore, unstruc-
tured. On the other hand, the process model in Figure 1(b) is well-structured –
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its RPST contains no rigid process component. Hence, if we had a method for
transforming every rigid component in the RPST into an equivalent structured
component, we would be able to transform any process model into a structured
model by traversing the RPST bottom-up and replacing each rigid by its equiva-
lent structured component. In the running example, this corresponds to replacing
R1 (highlighted with grey background in Figure 3(a)) with components B2 and
B3, as hinted in Figure 3(b). Accordingly, the rest of the article focuses on how
to structure rigid components.

Process component

Trivial Polygon Bond Rigid

Homogeneous Heterogeneous

XOR AND

Acyclic Cyclic

Acyclic Cyclic

Figure 4: A taxonomy of components

Existing methods for structuring rigid
components differ depending on the types
of gateways present in the rigid and
whether the rigid contains cycles or not. In
this respect, it is useful to further classify
rigid components as follows: A homoge-
neous rigid contains either only xor or only
and gateways. We call these rigids (ho-
mogeneous) xor rigids and (homogeneous)
and rigids, respectively. A heterogeneous
rigid contains a mixture of and/xor gate-
ways. Heterogeneous and homogeneous
xor rigids are further classified into cyclic,
if they contain at least one cyclic path, or acyclic. Importantly, we do not
classify homogeneous and rigids as cyclic or acyclic as process models with cyclic
and rigids are unsound [24]. Given this background, a taxonomy of process
components is provided in Figure 4.

2.3. Related Work

A large body of work on flowcharts and GOTO program transformation [11,
25] has addressed the problem of structuring xor rigids. In some cases, these
transformations introduce additional boolean variables in order to encode part of
the control flow, while in other cases they require certain nodes to be duplicated.
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Figure 5: An inherently unstructured pro-
cess model

One of the earliest studies on the prob-
lem of structuring process models with
concurrency is that of Kiepuszewski et
al. [3]. The authors showed that not all
acyclic and rigids can be structured by
putting forward a counter-example, which
is essentially the one presented in Figure 5.
The authors showed that there exists no
well-structured process model equivalent
to this one under a behavioral equivalence
notion which preserves the level of observed concurrency, viz. fully concurrent
bisimulation, which we shall discuss later. However, this work does not provide a
full characterization of the class of models that can be structured, nor it defines
any automated structuring technique. Instead, some causes of unstructuredness
are explored. In a similar vein, [12] presents a taxonomy of unstructuredness
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in process models, covering cyclic and acyclic rigids. Again, the taxonomy
is incomplete, i.e., it does not cover all possible cases of models that can be
structured. Also, the authors do not define an automated structuring algorithm.

In [13], the authors outline a classification of process components using region
trees. Region trees enable an incremental approach to the analysis and structuring
of process models. However, the authors do not provide a complete structuring
method for acyclic heterogeneous rigids, e.g., the one in Figure 1(a). Similar
remarks apply to [26]. In [16], the authors propose a method for structuring
cyclic xor rigids. In [15], the authors propose a method for structuring xor
rigids based on GOTO program transformations, and extends this method to
process graphs where xor rigids are nested inside bonds. Again, this method
cannot deal neither with and rigids nor with heterogeneous rigids.

The problem of structuring process models is relevant in the context of de-
signing translations between process definition languages, e.g., BPMN-to-BPEL
transformations. BPMN-to-BPEL transformations, e.g., [17], treat rigid compo-
nents as black-boxes which are translated using BPEL links or event handlers,
rather than seeking to transform these rigids into structured components.

Recently, refactoring process models in large repositories has gained consid-
erable attention [27, 28]. In that context, structuring is required, for instance,
to reduce the complexity of process models containing redundant elements, such
as superfluous control flow arcs, while preserving the original behavior. An
empirical study reported in [29] revealed that significant size reductions and
reuse can be achieved by refactoring duplicate components in process model
repositories. It is also suggested that further refactoring opportunities could be
uncovered only after structuring the models in these repositories.

3. Execution Semantics of Process Models

As outlined in Section 1, the proposed structuring method relies on a Petri
net semantics of process models. For the sake of making the paper self-contained,
we present below some standard definitions associated to Petri nets. We then
introduce a mapping from process models to Petri nets.

Definition 3.1 (Petri net).
A Petri net, or a net, is a tuple N = (P,T,F ), with P and T as finite disjoint
sets of places and transitions, and F ⊆ (P × T ) ∪ (T × P ) as the flow relation.

We identify F with its characteristic function on the set (P × T ) ∪ (T × P ).
For a node x ∈ P ∪ T , ●x = {y ∈ P ∪ T ∣ F (y, x) = 1} is a preset, whereas
x● = {y ∈ P ∪ T ∣ F (x, y) = 1} is a postset of x. A node x ∈ P ∪ T is an input
(output) node of a node y ∈ P ∪T , if x ∈ ●y (x ∈ y●). For X ⊆ P ∪T , ●X = ⋃x∈X ●x
and X● = ⋃x∈X x●. A place p ∈ P is a source place, if ●p = ∅ and it is a sink
place, if p● = ∅. We denote by F + the transitive closure of F , and by F ∗ – the
reflexive and transitive closure of F .

Nets have precise execution semantics defined in terms of a token game.

Definition 3.2 (Net semantics). Let N = (P,T,F ) be a net.
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○ M ∶ P → N0 is a marking of N assigning each place p ∈ P a number M(p)
of tokens. [p] denotes the marking where place p contains just one token
and all other places contain no tokens. We identify M with the multiset
containing M(p) copies of p for every p ∈ P .

○ For any transition t ∈ T and for any marking M of N , t is enabled at M ,
denoted by (N,M)[t⟩, iff ∀p ∈ ●t ∶M(p) ≥ 1.

○ If t ∈ T is enabled at M , then it can fire, which leads to a new marking
M ′, denoted by (N,M)[t⟩(N,M ′). The new marking M ′ is defined by
M ′(p) =M(p) − F (p, t) + F (t, p), for each place p ∈ P .

○ Let M0 be a marking. If (N,M0)[t1⟩(N,M1) . . . (N,Mn−1)[tn⟩(N,Mn)
are transition firings, then a sequence of transitions σ = (t1, . . . , tn) is a
firing sequence leading from M0 to Mn.

○ For any two markings M and M ′ of N , M ′ is reachable from M in N ,
denoted by M ′ ∈ [N,M⟩, iff there exists a firing sequence σ leading from
M to M ′. Note that σ can be the empty sequence. We have M ∈ [N,M⟩
for every M of N .

○ A net system, or a system, is a pair (N,M0), where N is a net and M0 is
a marking of N . M0 is called the initial marking of N .

We expect all nets to be T-restricted, i.e., every transition of a net has at least
one input place and at least one output place. Otherwise, we assume the natural
completion of a net, i.e., the net gets modified so that every transition without
an input (output) place gets a fresh input (output) place. By Min(N) we denote
the set of source places of net N . In the following, when we mention a net N
in the context of a net system, we assume N with its natural marking, i.e., the
marking comprising one token at each place in Min(N) and no tokens elsewhere.

Workflow (WF-)nets are a subclass of Petri nets specifically designed to
represent workflow procedures [30]. A WF-net is a net with two special places:
one to mark the start and the other the end of a workflow execution.

Definition 3.3 (WF-net, Short-circuit net, WF-system).
A Petri net N = (P,T,F ) is a workflow net, or a WF-net, iff N has a dedicated
source place i ∈ P , N has a dedicated sink place o ∈ P , and the short-circuit net
N⋆ = (P,T ∪ {t⋆}, F ∪ {(o, t⋆), (t⋆, i)}), t⋆ ∉ T , of N is strongly connected. A
WF-system is a pair (N,Mi), where Mi = [i].

Soundness and safeness are basic properties of WF-systems [30]. Soundness
states that every execution of a WF-system ends with a token in the sink place,
and once a token reaches the sink place, no other tokens remain in the net.
Safeness refers to the fact that there is never more than one token in a place.

Definition 3.4 (Liveness, Safeness, Soundness).
○ A system (N,M0), N = (P,T,F ), is live, iff for every reachable marking
M ∈ [N,M0⟩ and for every transition t ∈ T , there exists a marking M ′ ∈
[N,M⟩, such that (N,M ′)[t⟩.

○ A system (N,M0) is bounded, iff the set [N,M0⟩ is finite. A system
(N,M0), N = (P,T,F ), is safe, iff ∀ M ∈ [N,M0⟩ ∀ p ∈ P ∶M(p) ≤ 1.
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○ A WF-system (N,Mi) is sound, iff the short-circuit system (N⋆,Mi) is
live and bounded.

Petri nets have a great expressive power. They can be used to model a large
variety of distributed systems. However, it is often sufficient to reduce investiga-
tions to a subclass of nets. In the following, we shall make extensive use of a
structural subclass of free-choice nets [31, 32]. In a free-choice net two places
that share an output transition may not have any other output transitions and
two transitions that share an input place may not have any other input places.

Definition 3.5 (Free-choice net).
A net N = (P,T,F ) is free-choice, iff ∀p ∈ P, ∣p ● ∣ > 1 ∶ ●(p●) = {p}.

It is often useful to distinguish between observable and silent transitions of a
net. Accordingly, the notion of a net must be extended.

Definition 3.6 (Labeled net).
A labeled net is a tuple N = (P,T,F,T , λ), where (P,T,F ) is a net, T is a set of
labels, such that τ ∈ T , and λ ∶ T → T is a function that assigns each transition a
label. If λ(t) ≠ τ , then t is observable; otherwise, t is silent. λ is distinctive, if it
is injective on the set of all observable transitions.

Observable transitions are designed to represent actions of the distributed system
that are visible to the outside world, while silent transitions encode the internal
actions of the system.

The execution semantics of process models is defined by means of a mapping
to labeled free-choice Petri nets.

Definition 3.7 (WF-net of a process model).
Let W = (A,G|,G},C,A, µ) be a process model. Let I and O be source tasks
and sink tasks of W , respectively. The labeled net N = (P,T,F,T , λ) that
corresponds to W is defined by:

○ P = {px ∣ x ∈ G}} ∪ {px,y ∣ (x, y) ∈ C ∧ y ∈ A ∪G|} ∪ {px ∣ x ∈ I ∪O}.
○ T = {tx ∣ x ∈ A ∪G|} ∪ {tx,y ∣ (x, y) ∈ C ∧ x ∈ G}}.
○ F = {(tx, py) ∣ (x, y) ∈ C ∧ x ∈ A ∪G| ∧ y ∈ G}} ∪

{(tx, px,y) ∣ (x, y) ∈ C∧x, y ∈ A∪G|}∪{(tx,y, py) ∣ (x, y) ∈ C∧x, y ∈ G}}∪
{(tx,y, px,y) ∣ (x, y) ∈ C ∧ x ∈ G} ∧ y ∈ A ∪G|} ∪
{(px, tx,y) ∣ (x, y) ∈ C ∧ x ∈ G}} ∪ {(px,y, ty) ∣ (x, y) ∈ C ∧ y ∈ A ∪G|} ∪
{(px, tx) ∣ x ∈ I} ∪ {(tx, px) ∣ x ∈ O}.

○ T = A, λ(tx) = µ(x), tx ∈ T , x ∈ A; otherwise λ(t) = τ, t ∈ T .

For example, Figure 6 shows the net that corresponds to the process model in
Figure 1(a). The figure highlights the subnet that corresponds to rigid component
R1 in Figure 1(a) (inside the box with dotted borderline).

Definition 3.7 states that a task is mapped to a net transition with a single
input and a single output arc. An and gateway maps to a transition with multiple
outgoing arcs (and split) or multiple incoming arcs (and join). An xor gateway
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Figure 6: A WF-net that corresponds to the process model in Figure 1(a)

maps to a place with multiple outgoing arcs (xor split) or multiple incoming
arcs (xor join). The places corresponding to xor splits are immediately followed
by silent (τ) transitions representing the branching conditions, e.g., transitions
tt,a, tt,b, and tt,e in Figure 6. Please note that silent transitions of a labeled net
are drawn as empty rectangles.

Observe that every process model with a single source task and a single sink
task always maps onto a WF-net. A process model is sound, if and only if its
corresponding WF-net is sound. In this article, we only consider sound process
models. A sound free-choice WF-system is guaranteed to be safe [33]. Hence,
the rest of the article deals with sound and safe process models.

4. Behavioral Equivalence of Process Models

This section serves two purposes: (i) motivates the selection of fully concurrent
bisimulation, among other notions of behavioral equivalence, for structuring of
process models, (ii) discusses a procedure for checking behavioral equivalence of
special nets, viz. occurrence nets, by using the notion of ordering relations.

4.1. Fully Concurrent Bisimulation

An unstructured process model and its structured version are structurally
different, but behaviorally equivalent. There exist many notions of behavioral
equivalence for concurrent systems [34]. A common notion is that of bisimulation.
Related notions are those of weak bisimulation and branching bisimulation,
which abstract away from silent transitions. These notions have been advocated
as being suitable for comparing process models [18]. However, we argue that
they are not suitable for our purposes. These three notions adopt interleaving
semantics, i.e., no two tasks are executed exactly at the same time. Thus, a
concurrent system and its sequential simulation are considered equivalent. For
example, Figure 7 shows the sequential simulation of the net in Figure 6. The
net is structured and weakly bisimilar with the net in Figure 6, but it contains
no parallel branch. We could take any process model, compute its sequential
simulation, structure this sequential net using GOTO program transformations,
and transform the resulting sequential net into a structured process model. This
structuring method is complete, but if we start with a process model containing
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Figure 7: A sequential simulation of the net in Figure 6

and gateways, we obtain a (much larger) structured process model without any
parallel branches.

Accordingly, we adopt a notion of equivalence that preserves the level of
concurrency of observable transitions, viz. fully concurrent bisimulation [4].
Fully concurrent bisimulation is defined in terms of concurrent runs of a system,
a.k.a. processes in the literature (but not to be confused with “business processes”
or workflows). Every concurrent run of a system can be expressed as another
net with a particular structure, namely a causal net.

Definition 4.1 (Causal net).
A net N = (P,T,F ) is a causal net, iff :

○ for each place p ∈ P holds ∣ ● p∣ ≤ 1 and ∣p ● ∣ ≤ 1, and
○ N is acyclic, i.e., F + is irreflexive.

We also introduce ordering relations [35], which will be used throughout the
article as an instrument for reasoning about the behavior of nets.

Definition 4.2 (Ordering relations).
Let N = (P,T,F ) be a net and let x, y ∈ P ∪ T be two nodes of N .

○ x and y are in causal relation, written x↝N y, iff (x, y) ∈ F +. We denote
by ↜N the inverse of ↝N .

○ x and y are in conflict, written x #N y, iff there exist distinct transitions
t1, t2 ∈ T , such that ●t1 ∩ ●t2 ≠ ∅, and (t1, x), (t2, y) ∈ F

∗. If x #N x, then
x is in self-conflict.

○ x and y are concurrent, written x ∣∣N y, iff neither x ↝N y, nor y ↝N x,
nor x #N y.

The set RN = {↝N ,↜N ,#N , ∣∣N} forms the ordering relations of N .

In the following, we omit the subscripts of ordering relations where the context
is clear. It is easy to see that any two nodes in a causal net are either in causal
relation or concurrent. In order to define a process, we lack the notion of a cut.
A cut of a net is the maximal set of pairwise concurrent places with respect to
set inclusion. Finally, a process is defined as follows.

Definition 4.3 (Process).
A process π = (Nπ, ρ) of a system S = (N,M0), N = (P,T,F ), consists of a
causal net Nπ = (Pπ, Tπ, Fπ) and a function ρ ∶ Pπ ∪ Tπ → P ∪ T , such that:
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○ ρ(Pπ) ⊆ P, ρ(Tπ) ⊆ T ,
○ Min(Nπ) is a cut, which corresponds to the initial marking M0, that is
∀ p ∈ P ∶M0(p) = ∣ρ−1(p) ∩Min(Nπ)∣, and

○ ∀ t ∈ Tπ ∀ p ∈ P ∶ (F (p, ρ(t)) = ∣ρ−1(p) ∩ ●t∣) ∧ (F (ρ(t), p) = ∣ρ−1(p) ∩ t ● ∣).
A process π of S is initial, iff Tπ = ∅.

A process π′ is an extension of a process π if it is possible to observe π before
one observes π′. Consequently, process π is a prefix of π′.

Definition 4.4 (Prefix, Process extension).
Let π = (Nπ, ρ), Nπ = (Pπ, Tπ, Fπ), be a process of S = (N,M0), N = (P,T,F ).
Let c be a cut of Nπ and let c↓ be the set {x ∈ Pπ ∪ Tπ ∣ ∃ y ∈ c ∶ (x, y) ∈ F ∗}.
A process π↓c is a prefix of π, iff π↓c = ((Pπ ∩ c

↓, Tπ ∩ c↓, F ∩ (c↓ × c↓)), ρ∣c↓). A
process π′ is an extension of process π if π is a prefix of π′.

In order to define fully concurrent bisimulation, we need two auxiliary definitions:
λ-abstraction of a process, which is a process footprint that ignores silent
transitions, and the order-isomorphism of λ-abstractions.

Definition 4.5 (λ-abstraction).
Let S = (N,M0), N = (P,T,F,T , λ), be a labeled system and let π = (Nπ, ρ),
Nπ = (Pπ, Tπ, Fπ), be a process of S. The λ-abstraction of π, denoted by
αλ(π) = (T ′π,≺, λ

′), is defined by T ′π = {t ∈ Tπ ∣ λ(ρ(t)) ≠ τ}, ≺ is the causal
relation of Nπ restricted to the transitions in T ′π, i.e., ≺ = ↝Nπ ∩ (T ′π ×T

′
π) , and

λ′ ∶ T ′π → T , such that λ′(t) = λ(ρ(t)), t ∈ T ′π.

Two λ-abstractions are order-isomorphic if there exists a one-to-one correspon-
dence between transitions of both abstractions which also preserves the ordering
of the corresponding transitions in the abstractions.

Definition 4.6 (Order-isomorphism of λ-abstractions).
Let αλ1 = (T1,≺1, λ1) and αλ2 = (T2,≺2, λ2) be two λ-abstractions, both with
labels in T . Then αλ1 and αλ2 are order-isomorphic, iff there is a bijection
β ∶ T1 → T2, such that ∀ t ∈ T1 ∶ λ1(t) = λ2(β(t)) and ∀ t1, t2 ∈ T1 ∶ t1 ≺1 t2 ⇔
β(t1) ≺2 β(t2).

Given all of the above, fully concurrent bisimulation is defined as follows:

Definition 4.7 (Fully concurrent bisimulation).
Let S1 = (N1,M1) and S2 = (N2,M2) be labeled systems, N1 = (P1, T1, F1,T1, λ1)
and N2 = (P2, T2, F2,T2, λ2). S1 and S2 are fully concurrent bisimilar, or FCB-
equivalent, denoted by S1 ≈ S2, iff there is a set B ⊆ {(π1, π2, β)}, such that:

(i) π1 is a process of S1, π2 is a process of S2, and β is a relation between the
non-τ transitions of π1 and π2.

(ii) If π1
0 and π2

0 are the initial processes of S1 and S2, respectively, then
(π1

0 , π
2
0 ,∅) ∈ B.

(iii) If (π1, π2, β) ∈ B, then β is an order-isomorphism between the λ1-abstraction
of π1 and the λ2-abstraction of π2.
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(iv) ∀(π1, π2, β) ∈ B ∶
(a) If π′1 is an extension of π1, then ∃ (π′1, π

′
2, β

′) ∈ B where π′2 is an
extension of π2 and β ⊆ β′.

(b) Vice versa.

Fully concurrent bisimulation defines an equivalence relation on labeled systems
that is stricter than weak bisimulation and related notions. The nets in Figure 6
and Figure 7 are not fully concurrent bisimilar. Meanwhile, the two models in
Figure 1 are FCB-equivalent (with the understanding that two process models
are FCB-equivalent if the corresponding Petri nets are FCB-equivalent).

4.2. Behavioral Equivalence and Ordering Relations

The above definition of fully concurrent bisimulation is abstract and hardly of
any use when synthesizing structured nets from unstructured ones. Accordingly,
we employ a more convenient way of reasoning about equivalence based on the
ordering relations of the special class of nets, viz. occurrence nets.

Nets can have forward or backward conflicts, i.e., places with multiple output
or input transitions, respectively. This means that a subnet which may cause
a transition firing is not unique. An occurrence net is a net of a special kind.
Occurrence nets forbid backward conflicts and, thus, ensure the unique cause of
a transition firing. Essentially, occurrence nets generalize causal nets by allowing
forward conflicts. Note that every causal net is also an occurrence net.

Definition 4.8 (Occurrence net).
A net N = (P,T,F ) is an occurrence net, iff :

○ for each place p ∈ P holds ∣ ● p∣ ≤ 1,
○ N is acyclic, i.e., F + is irreflexive,
○ for each node x ∈ P ∪ T the set {y ∈ P ∪ T ∣ (y, x) ∈ F +} is finite, and
○ no t ∈ T is in self-conflict, i.e., #N is irreflexive.

Every two nodes of an occurrence net are either in causal, inverse causal, conflict,
or concurrent relation [35]. Let N = (P,T,F,T , λ) be a labeled occurrence net
and let T ′ ⊆ T be its observable transitions. The λ-ordering relations of N are
formed by its ordering relations restricted to T ′, i.e., Rλ = {↝N ∩ (T ′ × T ′),↜N
∩ (T ′ ×T ′),#N ∩ (T ′ ×T ′), ∣∣N ∩ (T ′ ×T ′)}. We say that two ordering relations
are isomorphic, if there exists a mapping between the observable transitions such
that every corresponding pair of transitions is in the same ordering relation.

Definition 4.9 (Isomorphism of ordering relations).
Let N1 = (P1, T1, F1,T1, λ1) and N2 = (P2, T2, F2,T2, λ2) be two labeled occur-
rence nets. Let T ′1 ⊆ T1 and T ′2 ⊆ T2 be observable transitions of N1 and N2,
respectively. Two λ-ordering relations Rλ1 of N1 and Rλ2 of N2 are isomorphic,
denoted by Rλ1 ≅ Rλ2 , iff there is a bijection γ ∶ T ′1 → T ′2, such that:

○ ∀ t ∈ T ′1 ∶ λ1(t) = λ2(γ(t)), and
○ ∀ t1, t2 ∈ T ′1 ∶ (t1 ↝N1 t2 ∧ γ(t1) ↝N2 γ(t2)) ∨ (t2 ↝N1 t1 ∧ γ(t2) ↝N2

γ(t1)) ∨ (t1 #N1 t2 ∧ γ(t1) #N2 γ(t2)) ∨ (t1 ∣∣N1 t2 ∧ γ(t1) ∣∣N2 γ(t2)).
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Finally, we show that two occurrence nets with isomorphic ordering relations
are FCB-equivalent, and vice versa. This result is exploited in the next section.

Theorem 1. Let S1 = (N1,M1), N1 = (P1, T1, F1,T1, λ1), and S2 = (N2,M2),
N2 = (P2, T2, F2,T2, λ2), be two labeled occurrence systems with natural markings
and distinctive labelings. Let T ′1 ⊆ T1 and T ′2 ⊆ T2 be observable transitions of N1

and N2, respectively, such that there exists a bijection ψ ∶ T ′1 → T ′2 for which holds
λ1(t) = λ2(ψ(t)), for all t ∈ T ′1. Let Rλ1 and Rλ2 be the λ-ordering relations of
N1 and N2, respectively. Then, it holds:

S1 ≈ S2 ⇔ Rλ1 ≅ Rλ2 .

Proof. We prove each direction of the equality separately.
(⇒) Let S1 and S2 be FCB-equivalent. We want to show that Rλ1 ≅ Rλ2 .

Let us assume that S1 ≈ S2 holds, but Rλ1 ≅ Rλ2 does not hold. Fur-
thermore, let us consider transitions t1i , t

1
j ∈ T ′1 that are in one-to-one

correspondence with transitions t2i , t
2
j ∈ T

′
2, i.e., ψ(t1i ) = t

2
i and ψ(t1j) = t

2
j .

All scenarios can be reduced to the following two cases:

Case 1: (t1i ∥N1
t1j or t1i ↝N1

t1j , and t2i #N2 t
2
j ). If t1i ∥N1

t1j or t1i ↝N1
t1j , then

there exists process π1 of S1 that contains t1i and t1j . If t2i #N2 t
2
j , then

there exists no process π2 of S2 that contains t2i and t2j .

Case 2: (t1i ↝N1 t
1
j , and t2j ↝N2 t

2
i or t2i ∣∣N2 t

2
j ). Let π1 be a process of S1 that

contains t1i and t1j , and let π2 be a process of S2 that contains t2i and t2j .
Then, there exists no φ ⊆ ψ, such that φ is an order-isomorphism between
λ-abstractions of π1 and π2.

In both cases we reach a contradiction, i.e., systems S1 and S2 cannot be
FCB-equivalent if the λ-ordering relations are not isomorphic.

(⇐) Let Rλ1 ≅ Rλ2 . We want to show that S1 and S2 are FCB-equivalent.
Let us assume that Rλ1 ≅ Rλ2 holds, but S1 ≈ S2 does not hold. Then,
for instance, there exists process π′1 of S1, which has no corresponding
order-isomorphic process of S2. Suppose that π′1 has the minimal size
among all such processes, i.e., any prefix of π′1 has a corresponding order-
isomorphic process of S2. Let π′1 be an extension of process π1 of S1 by
exactly one observable transition t1j ∈ T

′
1. Let π2 be a process of S2 that

is order-isomorphic with π1. Let t2j ∈ T
′
2 be in one-to-one correspondence

with t1j , i.e., ψ(t1j) = t
2
j . All scenarios can be reduced to the following three

cases:

Case 1: There exists process π′2 of S2 that contains t2j and is an extension of π2
by one observable transition. Moreover, there exists t1i ∈ T

′
1 in π1, such that

t1i ↝N1 t
1
j . However, it holds t2i ∣∣N2 t

2
j , for t2i ∈ T

′
2, such that ψ(t1i ) = t

2
i ;

otherwise there exists an order-isomorphism φ ⊆ ψ between π′1 and π′2.
Case 2: There exists no process π′2 of S2 that contains t2j and is an extension of

π2. Moreover, there exists t1i ∈ T
′
1 in π1, such that t1i ↝N1 t

1
j . However, it

holds t2i #N2 t
2
j , for t2i ∈ T

′
2, such that ψ(t1i ) = t

2
i .

15



Case 3: There exists process π′2 of S2 that contains t2j and is an extension of

π2, but not by only one observable transition. Then, there exists t2k ∈ T
′
2,

such that t2k ↝N2 t
2
j but π2 does not contain t2k. However, t1k ∈ T

′
1, such

that ψ(t1k) = t
2
k, is not in π′1 and, hence, t1k  N1 t

1
j .

In all three cases we reach a contradiction, i.e., the λ-ordering relations
cannot be isomorphic if systems S1 and S2 are not FCB-equivalent. ◻

5. Synthesis of Structured Process Models

Given an acyclic rigid process component, the main idea of the proposed
structuring technique is to compute its ordering relations and to synthesize,
whenever possible, a well-structured process component that exhibits the same
ordering relations (recall that a well-structured process component is the one
whose RPST contains only trivial, bond, and polygon components). In order to
implement this idea, we encode ordering relations in a directed graph, which we
call an ordering relations graph. Afterwards, we parse the graph into so called
modules that show ordering relations of well-structured process components. To
this end, we rely on the technique of modular decomposition [36]. With this
background, below we present the following: (i) the notion of a proper complete
prefix unfolding, which is essential for extracting all the needful behavioral
information from rigid components, (ii) the notion of an ordering relations graph,
which is a convenient abstraction of the information in the proper complete
prefix unfolding, and (iii) the structuring algorithm.

5.1. Proper Complete Prefix Unfoldings

According to Theorem 1, two systems are FCB-equivalent, if they demonstrate
same ordering relations. Given an (unstructured) process model, the structuring
proceeds by computing ordering relations of its corresponding net. Theorem 1
operates on occurrence nets and, hence, must be adjusted to the case of the
general class of systems. We accomplish the adjustment by employing the notion
of complete prefix unfolding of a system [37, 38]. A complete prefix unfolding of
a system is an occurrence net that explicitly represents all concurrent runs of
the system. To fit the structuring use case, complete prefix unfoldings must be
restricted, i.e., they must be proper.

A branching process is a formal way to capture the relation between a
system and its complete prefix unfolding. The relation technically builds on
a homomorphism that preserves the nature of nodes and the environment
of transitions. Let N1 = (P1, T1, F1) and N2 = (P2, T2, F2) be two nets. A
homomorphism from N1 to N2 is a mapping h ∶ P1 ∪ T1 → P2 ∪ T2, such that:
h(P1) ⊆ P2 and h(T1) ⊆ T2, and for all t ∈ T1, the restriction of h to ●t is a
bijection between ●t in N1 and ●h(t) in N2; correspondingly for t● and h(t)●.

Definition 5.1 (Branching process).
A branching process of a system S = (N,M0) is a pair β = (N ′, ν), where
N ′ = (P,T,F ) is an occurrence net and ν is a homomorphism from N ′ to N ,
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such that the restriction of ν to Min(N ′) is a bijection between Min(N ′) and
M0, and for all p1, p2 ∈ P holds if ●p1 = ●p2 and ν(p1) = ν(p2), then p1 = p2.

System S is referred to as the originative system of the branching process.
Similar to the prefix relation on processes, see Definition 4.3 and Definition 4.4,
a branching process can be in the prefix relation with another branching process.

Definition 5.2 (Prefix of a branching process).
Let β1 = (N1, ν1) and β2 = (N2, ν2) be two branching processes of a system. β1
is a prefix of β2, if N1 is a subnet of N2 such that: If a place belongs to N1, then
its input transition in N2 also belongs to N1. If a transition belongs to N1, then
its input and output places in N2 also belong to N1. ν1 is the restriction of ν2
to nodes of N1.

The maximal branching process of a net system with respect to the prefix
relation is called unfolding of the system. Every net system has a unique (up to
isomorphism) unfolding [37].
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Figure 8: The unfolding and a complete prefix unfolding

Figure 8 exemplifies the unfolding of a net that corresponds to a rigid
component R1 in Figure 6. An unfolding can contain multiple transitions
that refer to the same transition in its originative system, e.g., transitions tc
and t′c in Figure 8 both refer to transition tc in the originative system. If we
used the ordering relations computed from the unfolding to synthesize a well-
structured process component, the component would contain many duplicate
tasks. Fortunately, for any safe system there exists a prefix of its unfolding,
called complete prefix unfolding [39], that is more compact than the unfolding but
contains all the information about reachable markings of the originative system.
Complete prefix unfoldings are finite, even for cyclic systems. A complete prefix
unfolding of a system is obtained by truncating its unfolding at points where
the information about reachable markings starts to be redundant. In the next
definition, we summarize main notions on complete prefix unfoldings from [39].

Definition 5.3 (Complete prefix unfolding).
Let β = (N ′, ν), N ′ = (P,T,F ), be a branching process of a system S = (N,M0).
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○ A configuration C of β is a set of transitions, C ⊆ T , such that: (i) t ∈ C
implies that for all t′ ∈ T , t′ ↝ t implies t′ ∈ C, i.e., C is causally closed,
and (ii) for all t1, t2 ∈ C holds ¬(t1 # t2), i.e., C is conflict-free.

○ A local configuration of a transition t ∈ T , denoted by ⌈t⌉, is the set
{t′ ∈ T ∣ t′ ↝ t}, i.e., the set of transitions that precede t.

○ For a finite configuration C of β, Cut(C) = (Min(N ′) ∪C●) ∖ ●C is a cut,
whereas ν(Cut(C)) is a reachable marking of S, denoted by Mark(C).

○ β is complete if for each reachable marking M of S there exists a configura-
tion C of β, such that: (i) Mark(C) =M , i.e., M is represented in β, and
(ii) for each transition t enabled at M in N , there exists a configuration
C ∪ {t′}, t′ ∈ T , of β such that t′ ∉ C and ν(t′) = t.

○ A partial order ⊲ on the finite configurations of β is an adequate order, if:
(i) ⊲ is well-founded, (ii) C1 ⊂ C2 implies C1 ⊲ C2, and (iii) ⊲ is preserved
by finite extensions, cf. [39] for details.

○ A transition t ∈ T is a cutoff transition of β, induced by ⊲, iff there
exists a corresponding transition corr(t) ∈ T , such that Mark(⌈t⌉) =
Mark(⌈corr(t)⌉) and ⌈corr(t)⌉ ⊲ ⌈t⌉.

○ β is a complete prefix unfolding, induced by ⊲, iff β is the maximal prefix
of the unfolding of S that contains no transition after a cutoff transition.

The definition of a complete prefix unfolding is, in fact, the definition of a family
of prefixes. Every adequate order leads to a different prefix with a different set of
cutoff transitions. There exist several definitions of adequate orders, cf. [39–41].
Our structuring technique relies on the adequate total order for safe systems
proposed in [40], hereafter denoted by ⊲safe . The desired property of a complete
prefix unfolding is minimality. For a given system, there exist no smaller complete
prefix unfolding of the system than its minimal one. By employing ⊲safe adequate
order, one always computes the minimal complete prefix unfolding of a safe
system, if one only compares markings corresponding to local configurations [40].

Figure 8 exemplifies the notion of a complete prefix unfolding. The dotted
lines indicate which parts of the unfolding must be truncated. Transition tv is
a cutoff transition of the unfolding, whereas transition tu is its corresponding
transition; the relation is visualized by a dotted arc. Both local configurations
of transitions tv and tu induce the same marking {pw, px} in the originative
system. The subnet of the unfolding that follows Cut(⌈tv⌉) is isomorphic with
the subnet that follows Cut(⌈tu⌉) (equivalent markings imply equivalent futures
of branching processes, cf. [39]). As this implies redundancy, only one subnet is
included in the complete prefix unfolding.

The running time of the algorithm for constructing a complete prefix unfolding
of a safe system when employing an adequate total order, cf. [39], has an upper
bound of O(∣T ∣ ⋅ Rξ), where T is the set of transitions, R is the number of
reachable markings, and ξ is the maximal size of the presets or postsets of the
transitions in the originative system. The complete prefix unfolding contains a
total number of O(ξ ⋅R) nodes. Please observe that in the case of an and rigid
component, the step of computing a complete prefix unfolding is not required, as
the corresponding WF-net and its complete prefix unfolding coincide. Besides,
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we do not compute a complete prefix unfolding over the whole net, but only on
individual rigid components of the net. Tests we have conducted with sample
process models show that the complete prefix unfolding computation takes sub-
second times2. This finding is in line with other works that have empirically
shown that complete prefix unfolding computation is efficient in practice.

In order to allow structuring, we impose an additional requirement on com-
plete prefix unfoldings: A complete prefix unfolding must be proper.

Definition 5.4 (Proper complete prefix unfolding).
Let β = (N,ν), N = (P,T,F ), be a branching process of an acyclic system S.

○ A cutoff transition t ∈ T of β induced by an adequate order ⊲ is healthy, iff
Cut(⌈t⌉) ∖ t● = Cut(⌈corr(t)⌉) ∖ corr(t)●.

○ β is a proper complete prefix unfolding, or a proper prefix, induced by an
adequate order ⊲, iff β is the maximal prefix of the unfolding of S that
contains no transition after a healthy cutoff transition.

Proper prefixes of acyclic systems are clearly complete and finite. The properness
requirement guarantees that concurrency is kept encapsulated, i.e., if some branch
of a complete prefix unfolding contains a non-cutoff transition t that introduces
concurrency, i.e., ∣t ● ∣ > 1, then subsequently the very same branch must contain
a transition t′ that synchronizes this concurrency, i.e., for all p ∈ t● holds p↝ t′.
As the restriction for healthy cutoff transitions is defined in terms of local
configurations, a proper complete prefix unfolding of a safe acyclic system is
always minimal when constructed using ⊲safe adequate order. In the following,
when we refer to a proper prefix of a safe acyclic system, we always assume the
minimal prefix constructed using ⊲safe adequate order. The only cutoff transition
tv in Figure 8 is healthy and, hence, the complete prefix unfolding is proper.

5.2. Ordering Relations Graphs

Ordering relations of a proper prefix specify the unique behavioral footprint
of its originative system. Our idea is to use these relations to synthesize a
well-structured process component. For this purpose, it is convenient to encode
ordering relations in a directed graph, viz. ordering relations graph. As will be
shown later, such a representation allows for a simple structuring algorithm.

In order to overcome the effects of the proper prefix truncation at healthy
cutoff transitions, the notion of an ordering relations graph is founded on proper
ordering relations.

Definition 5.5 (Ordering relations graph).
Let β = (N,ν), N = (P,T,F ), be a proper complete prefix unfolding of a labeled
acyclic system S = (N ′,M0), N

′ = (P ′, T ′, F ′,T , λ).

2Using the Mole tool – http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/, which
implements the algorithm in [39]
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○ Two nodes x and y of N are in proper causal relation, denoted by x↣N y,
iff (x, y) ∈ F + or there exists a sequence (t1, . . . , tn) of healthy cutoff transi-
tions of β, ti ∈ T , 1 ≤ i ≤ n, n ∈ N, such that (x, t1) ∈ F

∗, (corr(tn), y) ∈ F
+,

and (corr(tj), tj+1) ∈ F ∗, 1 ≤ j < n. We denote by ↢N the inverse of ↣N .
○ Let RN = {↝N ,↜N ,#N , ∣∣N} be the ordering relations of N . The set
⊞N = #N ∖ (↣N ∪ ↢N) is the proper conflict relation of N . The set
RN = {↣N ,↢N ,⊞N , ∣∣N} forms the proper ordering relations of N . We
refer to RN as observable proper ordering relations, if the relations in RN

are restricted to the set of transitions of N that correspond to observable
transitions of N ′.

○ Let RN = {↣N ,↢N ,⊞N , ∣∣N} be the observable proper ordering relations of
N . An ordering relations graph, or orgraph, GN = (V,A,B, σ) of β consists
of vertices V ⊆ T defined by transitions of N that correspond to observable
transitions of N ′, i.e., V = {t ∈ T ∣ λ(ν(t)) ≠ τ}, arcs A = ↣N ∪ ⊞N , and
the labeling function σ ∶ V → B, B = T ∖ {τ} with σ(v) = λ(ν(v)), v ∈ V .

In the following, we omit the subscripts (superscripts) of proper ordering relations
and orgraphs where the context is clear.
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Figure 9: (a) An orgraph, (b)–(c) the MDT of (a), and (d) the MDT of the orgraph computed
for the rigid component R1 in Figure 5

Figure 9(a) shows the orgraph of the proper complete prefix unfolding in
Figure 8. Orgraphs are visualized as directed graphs. Due to a design decision,
arcs of orgraphs encode proper causal (one-sided arrows) and proper conflict
(two-sided arrows) relations. Such a design allows for unique encoding of proper
ordering relations. Thus, one can deduce from the orgraph in Figure 9(a) that
transitions ta and tc of the proper prefix in Figure 8 are in proper causal relation,
ta and tb are in proper conflict relation, whereas tc and td are concurrent. Observe
that tb is in proper causal relation with tc and td as there exists a sequence (tv),
such that (tb, tv) ∈ F

∗, (corr(tv), tc) ∈ F
+, and (corr(tv), td) ∈ F

+.

5.3. Structuring

The RPST of a well-structured process model is composed of trivial, polygon,
and bond (either and or xor) components. In contrast to a rigid component, each
component in a well-structured model has a well-defined and regular structure
within the corresponding orgraph, which allows for a precise characterization.
The ordering relations graph of an xor bond is a complete graph, or a clique,

20



whereas the orgraph of an and bond is an edgeless graph. These topologies are
consistent with the intuition behind, i.e., all tasks in an xor bond are in conflict,
i.e., only one is executed, and all tasks in an and bond are concurrently executed.
Figure 10(a) shows an xor bond with three branches, whereas Figure 10(b) shows
the corresponding complete orgraph. Similarly, Figure 10(c) and Figure 10(d)
show an and bond and the corresponding orgraph, respectively. In the cases of a
trivial and polygon component, the orgraph is a direct acyclic graph representing
the transitive closure, or the total order, of the proper causal relation. Figure 10(e)
shows a polygon composed of three tasks, whereas Figure 10(f) presents the
corresponding transitive closure over the proper causal relation.
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Figure 10: (a) An xor bond component, (b) a complete orgraph, (c) an and bond component,
(d) an edgeless orgraph, (e) a polygon component, and (f) a total order orgraph

The main idea of our structuring technique is to parse a given orgraph into
subgraphs. If one can decompose an orgraph into subgraphs such that every
subgraph is either complete, edgeless, or total order, then one can construct
a corresponding well-structured process component for each of the discovered
subgraphs and, in this way, to synthesize a well-structured process model. To
perform the parsing, we rely on the modular decomposition of directed graphs [36].

The modular decomposition is a technique for parsing directed graphs into
modules. Let G = (V,A,B, σ) be an ordering relations graph. A module M ⊆ V
of G is a non-empty subset of vertices of G that are in uniform relation with
vertices V ∖M , i.e., if v ∈ V ∖M , then v has directed arcs to all members of M or
to none of them, and all members of M have directed arcs to v or none of them
do. However, v1, v2 ∈ V ∖M , v1 ≠ v2, can have different relations to members
of M . Moreover, the members of M and V ∖M can have arbitrary relations to
each other [36]. This definition of a module supports our intent of synthesizing
a process component from the ordering relations captured in a module; all tasks
inside a SESE process component are in the same ordering relation with a given
task outside the component.

Two modules M1 and M2 of G overlap, iff they intersect and neither is a
subset of the other, i.e., M1 ∖M2, M1 ∩M2 , and M2 ∖M1 are all non-empty.
M1 is strong, iff there exists no module M2 of G, such that M1 and M2 overlap.
The modular decomposition substitutes each strong module of a graph by a new
vertex and proceeds recursively. The result is a unique rooted tree, called the
modular decomposition tree, which can be computed in linear time [36].
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Definition 5.6 (Modular Decomposition Tree).
The modular decomposition tree (MDT) of an ordering relations graph is the set
of all its strong modules.

According to [36], each module in the MDT belongs to one out of four classes.

Definition 5.7 (Trivial, Linear, Complete, Primitive).
Let M be a module of an ordering relations graph G.

○ M is a trivial module, iff M is singleton, i.e., M contains a single vertex.
○ M is a linear module, iff there exists a linear order (x1, . . . , x∣M ∣) of elements

of M , such that there is a directed arc from xi to xj in G, iff i < j.
○ M is a complete module, iff the subgraph of G induced by vertices in M is

either complete or edgeless.
○ M is a primitive module, iff M is neither a trivial, nor a linear, nor a

complete module.

For our purposes, we classify modules further: If a complete module induces a
complete subgraph, the module is referred to as a xor complete. If a complete
module induces an edgeless subgraph, the module is referred to as an and
complete. Finally, if a module induces a subgraph with a pair of distinct vertices
which are not connected by an arc, the module is said to be concurrent.

Considering all of the above, the next proposition summarizes relations
between components of a process model and modules of an orgraph.

Proposition 5.1. Let C1 be a process component and let M1 be the corre-
sponding ordering relations graph. Let M2 be an ordering relations graph and
let C2 be its corresponding process component.

1. If C1 is trivial or polygon, then M1 is linear.
2. If M2 is linear, then there exists C2 that is trivial or polygon.
3. If C1 is and (xor) bond, then M1 is and (xor) complete.
4. If M2 is and (xor) complete, then there exists C2 that is and (xor) bond.

Figure 9(b) shows the MDT of the orgraph in Figure 9(a). Every region inside a
dotted box defines a strong module. Note that module names hint at their class.
For instance, module C1 is a complete module composed of two vertices a and b.
Observe that every vertex outside C1, i.e., either vertex c or d, is in same relation
with every vertex inside C1, i.e., vertices a and b. As C1 induces a complete
graph, it is an xor complete module. Similarly, C2 is an and complete module.
By treating both modules as singletons, the modular decomposition identifies
that they are in total order and, hence, form linear module L1. Figure 9(c)
visualizes the MDT as a tree (without trivial modules).

We are now ready to present the main result of this section.

Theorem 2. Let G be an ordering relations graph. The MDT of G contains no
primitive module, iff there exists a well-structured process model W such that G
is the ordering relations graph of W .

Proof. Let G = (V,A,B, σ) be an ordering relations graph.
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(⇒) Let G be such that the MDT of G contains no primitive module. We
show now by structural induction on the MDT of G that there exists a
well-structured process model W such that G is the ordering relations graph
of W . The MDT of G can contain trivial, linear, or complete modules.

Base: If the MDT of G consists of a single module M , then M is a trivial
module and W is a process model composed of a single task.

Step: Let M be a module of the MDT of G such that every child module of
M has a corresponding well-structured process component. If M is linear,
then W can be a trivial or polygon component composed from children of
M , cf. (2) in Prop. 5.1. If M is complete, then W can be a bond process
component, either and or xor, composed from process components that
correspond to child modules of M , cf. (4) in Prop. 5.1. In both cases, M
has a corresponding well-structured process model (component).

Therefore, there exists a well-structured process model W that is composed
of process components which correspond to child modules of module V ,
such that G is the ordering relations graph of W .

(⇐) Let W be a well-structured process model such that G is the ordering
relations graph of W . We show now by structural induction on the RPST
of W that the MDT of G has no primitive module. Because W is well-
structured, the RPST of W has no rigid component.

Base: If W is composed of a single task, then the corresponding ordering
relations graph contains one trivial module.

Step: Let C be a process component of the RPST of W such that every child
process component of C has a corresponding ordering relations graph
without a primitive module. If C is trivial or polygon, then G is either
trivial or linear, cf. (1) in Prop. 5.1. If C is bond, then G is complete, cf.
(3) in Prop. 5.1. In both cases, C has a corresponding ordering relations
graph without a primitive module.

Therefore, the MDT of the ordering relations graph that corresponds to
W has no primitive module. ◻

Theorem 2 implicitly specifies a procedure which, given a process model, synthesis
an FCB-equivalent well-structured model. This procedure is made explicit
in Algorithm 1. Note that the algorithm expects as input a process model
(component) in which no pair of distinct tasks have the same label.

Without loss of generality, Algorithm 1 assumes that the RPST of the
process model (or process component), taken as input, consists of a single rigid
component. The algorithm can be trivially extended to the case where the
RPST of the process model given as input consists of a rigid component with
polygons, bonds, or rigids as descendants. In this latter case, child components
of the rigid component need to be abstracted into atomic task nodes. Also, if
we were given a process model whose RPST contains several rigid components,
we would start by structuring the rigid components at lower levels of the RPST
and collapsing them into atomic task nodes before attempting to structure
rigids at upper levels. The complexity of the algorithm is determined by the
complexity of the unfolding step (see earlier discussion). The computation of
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Algorithm 1: Structuring an Acyclic Rigid Process Component

Input: P ∶ A process model (component) in which all tasks are distinctly
labeled and whose RPST consists of an acyclic rigid component

Output: T ∶ An RPST consisting of trivials, bonds, polygons
N ← CorrespondingNet(P ) // cf. Definition 3.7
U ← ProperCompletePrefixUnfolding(N) // cf. Definition 5.4
ORG ← OrderingRelationsGraph(U) // cf. Definition 5.5
MDT ← ModularDecomposition(ORG) // cf. Definition 5.6
T ← RPST obtained by traversing each module M of the MDT (in
postorder) and applying the following rules:
○ If M is and complete, generate an and bond component in T
○ If M is xor complete, generate an xor bond component in T
○ If M is linear, generate a trivial or polygon component in T
○ If M is non-concurrent primitive, generate a well-structured

component using compiler techniques, e.g., [11]
○ If M is concurrent primitive, FAIL

return T

an orgraph has polynomial complexity. All other steps can be accomplished in
linear time. As explained before, in the case of an and rigid, the unfolding step
is not required as nets which correspond to and rigids and their proper prefixes
coincide. Note that the behavior captured in non-concurrent primitives can be
structured by employing compiler techniques for GOTO program transformations.
To accomplish structuring, one first needs to synthesize a program (process
component) from a non-concurrent primitive module. The synthesis can be
trivially accomplished by adopting the technique in [42]. The algorithm fails if
the input process component is inherently unstructured, such as component R1
in Figure 11(a). In this particular case, the ordering relations graph of R1 forms a
single concurrent primitive module, cf. Figure 11(b). Observe that the unfolding
step duplicates the transition which corresponds to task f . As structuring relies
on minimal proper prefixes (see the discussion in Section 5.1), the proposed
technique always operates with the minimum duplication of transitions which is
required to allow structuring.

In Figure 9(d), we show the MDT of the orgraph computed for process
component R1 in Figure 5. The MDT contains a single primitive module
P1, which hints at inherent unstructured nature of R1. Note that due to the
characteristic topology of causal relations, the pattern in Figure 5 is often referred
to as Z-structure or N-Structure.

In light of the above, we conclude that given an acyclic process model with an
arbitrary topology, one can construct an FCB-equivalent well-structured process
model, iff the proper complete prefix unfolding of the system that corresponds to
the given process model is such that the modular decomposition of its orgraph
contains no concurrent primitive module.
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Figure 11: (a) An unstructured process model with inherently unstructured rigid process
component R1 and (b) the ordering relations graph of R1 from (a)

6. Structuring Multi-Source and/or Multi-Sink Process Models

In Section 5, we assumed that process models have single source and single
sink nodes. However, contemporary notations for business process modeling,
including BPMN and EPC, support the definition of models with multiple source
and/or multiple sink events, hereafter called multi-source and multi-sink models.
In this section, we extend the notion of structuredness for multi-source and
multi-sink models and we extend the structuring method accordingly.

6.1. Notion of Structuredness

In the context of single-source and single-sink process models, we have defined
a well-structured process model as one whose RPST does not contain any rigid
components, cf. Section 2.2. This notion needs to be extended for the case of
multi-source and multi-sink models. To this end, a process model with multiple
source nodes is augmented with an additional (start) node and an arc from
this fresh node to each of the source nodes. This additional node is labeled
s by convention. Conversely, a model with multiple sink nodes is augmented
with an additional (end) node and an arc from each of the sink nodes of the
original model to this fresh node (labeled e by convention). This augmentation
is captured by the following definition.

Definition 6.1 (Augmented process model).
Let W be a multi-source and multi-sink process model. The augmented version
of W is constructed from W as follows:

○ If W has more than one source, a new source start is added and for each
source node s of W , an arc from start to s is added.

○ If W has more than one sink, a new sink end is added and for each sink
node s of W , an arc from s to end is added.

A multi-source and multi-sink model is said to be (well-)structured, iff the RPST
of its augmented version contains no rigid process component. Please note that
the augmentation of a model aligns well with the principles of the generalized
RPST computation, cf. [21] for details.
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Given an unstructured multi-source and multi-sink process model P , our goal
is to compute an FCB-equivalent structured process model P ′. By definition,
this means that the labels of the nodes in P ′ must coincide with those in P .
Hence, the special nodes s and e, which are added for the sake of constructing
the RPST, need to be removed at the end of the structuring procedure, thereby
yielding a structured multi-source and multi-sink process model as output.

6.2. Instantiation Semantics

Given a multi-source and multi-sink process model, we can compute the
RPST of the augmented model in order to separate rigid components from
non-rigid ones. Non-rigid components are already structured and thus can be
replaced with a single “black box”, so that their parent node in the RPST can
be structured. For example, Figure 12(a) shows a multi-source and multi-sink
model, captured in EPC notation. Figure 12(b) shows its augmented version
whose RPST contains rigid component R1, under which we can find two bond
components B1 and B2. Each of these bond components in turn contains two
polygons, but the polygons are not shown in the figure for the sake of simplicity.
After replacing components B1 and B2 with black-boxes, we obtain the abstract
model depicted in Figure 12(c) consisting of a single rigid component. The
problem of structuring the original EPC is then reduced to that of structuring
this rigid component.
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Figure 12: (a) A multi-source and multi-sink EPC, (b) its augmented version, and (c) its
abstract version

Rigid components can be classified into those that contain one of the special
nodes s or e, and those that do not. The latter type of rigid can be structured
using the method outlined in the previous sections. Therefore, we can focus our
attention on the case where a rigid contains s or e. Without loss of generality,
we assume below that we are given a rigid component that contains both the
s node and the e node introduced during the augmentation. The case where a
rigid contains the s node or the e node (but not both) is just a special case.
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The first step in structuring a rigid component is to compute its corresponding
net. Definition 3.7 can be directly applied to multi-sink process models (and thus
to multi-sink rigid components). The resulting net will have multiple sink places,
but this feature does not pose any particular problem. Indeed, the unfolding is
defined for multi-sink nets in the same way as for single-sink nets. On the other
hand, the mapping of multi-source process models to Petri nets requires special
care for two reasons:

1. In order to compute an unfolding, we need to define an “initial marking”.
In the case of a single-source net, the initial marking is the one that
contains a single token in the source place and no other tokens, but in the
case of multi-source nets, several initial markings are possible.

2. Different process modeling notations adopt different semantics for multi-
source models [43].

Hence, we need to consider each process modeling notation separately in order
to determine how to map a multi-source process model (or a process component)
in that notation into a Petri net, and how to determine the initial marking from
which the unfolding will be computed. Below we address these questions in the
context of two concrete process modeling notations, namely BPMN and EPC.

6.2.1. Multi-source BPMN Models

The notion of process model (as per Definition 2.1) allows us to generically
represent models in several graph-oriented process modeling notations, including
BPMN and EPC. Below, we consider the case where a process model represents
a BPMN model. In this context, a node in a process model represents either a
BPMN activity, a BPMN event, or a BPMN gateway. Such process models may
contain multiple source nodes, each one corresponding either to a “start event”
or to an “event-based gateway”. As per the BPMN standard specification [1],
the instantiation semantics of such multi-source models is as follows:

○ If a BPMN model starts with multiple events, a new process instance is
created whenever one of these “start events” fires. The mapping of this
case to a Petri net with a single start place is depicted in Figure 13(a).

○ If a BPMN model starts with multiple event-based gateways that partici-
pate in a common conversation, each of these gateways must receive one
token. The corresponding Petri net mapping is shown in Figure 13(b).

○ If a BPMN model starts with a so-called “parallel event-based gateway”,
then each one of the events connected to this parallel event-driven gateway
must occur before the process is instantiated. The corresponding Petri net
mapping is shown in Figure 13(c).

In all three cases, we see that a multi-source BPMN model – and consequently
a rigid component in a BPMN model containing the s node – can be mapped to
a Petri net with a single source place, such that the initial marking consists of
exactly one token in this source place. Since this mapping is trivial, as shown in
Figure 13, we omit its formal definition. The rest of the section focuses on the
EPC semantics, which requires a more extensive treatment.
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Figure 13: Mapping multi-source BPMN models to nets

6.2.2. Multi-source EPC Models

There is no “official” precise instantiation semantics for EPCs with multiple
start events. However, some authors have adopted the following semantics [43]:

○ An instance of the process requires at least one of the start events to be
triggered.

○ Additional start events may be triggered during the execution of a process
instance.

An EPC can be represented as a process model (as per Definition 2.1) where
each node of the process model represents either a function, an event, or a
connector. In order to capture the instantiation semantics of an EPC process
model with multiple source tasks, the nets obtained by applying Definition 3.7
can be augmented to a single source.

Definition 6.2 (Augmented Petri net).
Let N = (P,T,F ) be a net and let S ⊂ P be the set of all source places of N .
The augmented version of N is constructed from N as follows:

○ A fresh place pstart is added in the net.
○ For every non-empty subset of source places s ∈ P(S) ∖ ∅, a fresh start

transition ts and a fresh flow arc (pstart, ts) is added in the net.
○ For every source place s ∈ S and for every non-empty subset of source

places s ∈ P(S) ∖∅ containing s, i.e., s ∈ s, a fresh flow arc (ts, s) is added
in the net.
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Figure 14: The augmented version of the net that corresponds to the abstract model in
Figure 12(c)

For example, Figure 14 shows the augmented version of the net which corresponds
to the abstract EPC model in Figure 12(c) (note the abuse of notation for
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simplicity reasons). Fresh nodes are highlighted with grey background. Place
pstart is the only source place of the resulting net.

If we set the initial marking to be the one that contains a single token
in the source place (and no tokens elsewhere), the augmented net captures
all possible instantiations of the process model. The Petri net of a multi-
source and multi-sink EPC model (or component of a model) starts with one
transition per possible instantiation. For instance, the net in Figure 14 starts
with three transitions: transition t{B1} corresponds to the instantiation where
only component B1 is executed, transition t{B2} corresponds to the instantiation
where only component B2 is executed, and transition t{B1,B2} corresponds to
the case where both components are executed.

6.3. Soundness

An instantiation of a process model does not always lead to a successful
completion of the process. Some instantiations may lead to deadlocks or lack of
synchronization. Here, a deadlock is defined as a situation where no transition
can fire, but one of the branches is still active. In other words, a deadlock occurs
when there is a token in a non-sink place in the net, and no transition in the net
is enabled. Lack of synchronization refers to the situation in which a transition
can fire twice (without any other transition firing in-between these two firings).
This corresponds to the situation where the net reaches a marking where there is
more than one token in a place. Deadlock freeness and proper synchronization,
i.e., absence of any state exhibiting a lack of synchronization, correspond to the
notions of soundness and safeness introduced earlier in this article [24].

In light of the above, Decker and Mendling [43] suggest – but do not formally
define – a notion of “correct instantiation” of an EPC based on the idea that a
start event will be triggered, if and only if it is required, meaning that:

○ If the execution of a process instance runs into a deadlock because one of
its join gateways is waiting for one of its branches to complete, and the
completion of this branch requires one of the start events to be triggered,
this start event will eventually be triggered so that the execution of the
process instance can complete.

○ A start event will not be triggered if this may eventually cause a lack of
synchronization.

In order to illustrate the notions of deadlock and lack of synchronization,
let us go back to the EPC in Figure 12(a). The execution of the process may
start with an occurrence of event e1. Eventually, the left-hand side branch of
gateway w completes, i.e., a token reaches the left-hand side incoming arc of
the gateway. This is the state depicted in Figure 15(a). In order to proceed, a
token is required in the second incoming branch. Otherwise, the execution would
remain deadlocked in gateway w. Thus, event e2 must eventually occur. On the
other hand, we note that neither event e3 nor event e4 may occur at this stage,
since that would lead to a lack of synchronization, depicted in Figure 15(b),
which shows a state where event e6 may occur twice.
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Figure 15: Markings of EPCs with (a) “event must occur” situation, and (b) lack of synchro-
nization

Coming back to the abstract model in Figure 12(c), we observe that the
instantiation where either B1 or B2 are executed is correct. On the other
hand, the instantiation where both B1 and B2 are executed leads to the lack
of synchronization depicted in Figure 15(b). In other words, start transition
t{B1,B2} in Figure 14 corresponds to an incorrect instantiation of the original
model. We note in passing that in the abstract EPC, the deadlock situation
depicted in Figure 15(a) does not manifest itself because the underlying events
have been abstracted away inside B1.

In order to capture the notion of “correct instantiation” introduced by Decker
and Mendling [43], we proceed as follows: We start with the augmented version
of a net that corresponds to a multi-source process model, as per Definition 6.2.
Based on this net, we compute an unfolding starting from the initial marking
that puts one token in the source place and no tokens elsewhere. This unfolding
captures both the correct and incorrect instantiations. Accordingly, we “prune”
the unfolding in order to remove those branches that represent incorrect instan-
tiations. To this end, we formally capture – at the level of the unfolding – the
notion of incorrect instantiation, i.e., lack of synchronization and deadlock. The
following definition – based on similar definitions by Fahland [44] – captures
these notions. Here, the term “locally unsafe place” is used in lieu of “lack of
synchronization”.

Definition 6.3 (Local safeness, Local deadlock).
Let β = (N,ν), N = (P,T,F ), be the unfolding of an acyclic system S = (N ′,M0).

○ A place p ∈ P is locally safe in β, iff there exists no place q ∈ P , q ≠ p, such
that p is concurrent to q and both correspond to the same place in N ′, i.e.,
∄ q ∈ P, q ≠ p ∶ (p ∣∣N q) ∧ (ν(p) = ν(q)); otherwise p is locally unsafe.

○ A place p ∈ P is a local deadlock in β, iff one of the following holds:
− p● = ∅ and ν(p)● ≠ ∅.
− There exist transition t ∈ p●, place p′ ∈ ●t, and place p′′ ∈ P , such that:
p′′● = ∅, p′′ #N p, and p′′ ∣∣N p′.

A locally unsafe place in a branching process of a net system clearly signals that
the system is unsafe, cf. Prop. 6.3 in [39]. Every local deadlock hints at existence
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of a deadlock in the system. Definition 6.3 specifies the deadlock condition in
the special case of acyclic systems. In case of the general class of systems, one
can deduce deadlock conditions by following the principles described in [45, 46].
Accordingly, the sound unfolding of a system is a prefix of its unfolding that
excludes incorrect instantiations.

Definition 6.4 (Sound unfolding).
Let β = (N,ν), N = (P,T,F ), be the unfolding of an acyclic system S. The
sound unfolding of S is the maximal prefix of β that contains no transition that
is in causal relation either with a locally unsafe place or a local deadlock in β.

Figure 16 exemplifies the sound unfolding of the net in Figure 14. The subnet
of the unfolding below the dashed line must be pruned out because it contains
a lack of synchronization. Indeed, places p′′z , p′′z,e6, p′′e6, p′′′z , p′′′z,e6, and p′′′e6
(highlighted with grey background) are locally unsafe. Accordingly, transition
t{B1,B2} (highlighted with black background) is the transition that is causal with
all locally unsafe places of the unfolding.
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Figure 16: The sound unfolding of the net in Figure 14

In certain cases, some transitions of a system might be not represented in
its sound unfolding. This happens when a transition does not occur in any
execution that starts with a correct instantiation. Such systems are unsound
and are excluded from further consideration.

Definition 6.5 (Soundness of acyclic nets).
Let β = (N,ν), N = (P,T,F ), be the sound unfolding of the augmented version
N ′ = (P ′, T ′, F ′) of an acyclic net N ′′. Let S′ ⊆ T ′ be the set of all start
transitions of N ′. N ′′ is said to be sound, iff for every t′ ∈ T ′ ∖ S′ there exists
t ∈ T , such that ν(t) = t′.

Specifically, we say that a multi-source and multi-sink process model is sound,
if every non-start transition of the augmented version of the corresponding

31



net appears in at least one execution that starts with a correct instantiation.
The sound unfolding in Figure 16 represents all the non-start transitions of its
originative net in Figure 14 and, hence, the model in Figure 12 is sound.

6.4. Structuring

Given a sound multi-source and multi-sink process model, one can construct
an equivalent structured model using Algorithm 1 with the following changes:

○ The corresponding net must be augmented according to Definition 6.2.
○ One must construct a proper prefix based on the sound unfolding, i.e., as

a prefix of the sound unfolding.

Note that the sound unfolding of the net in Figure 14 and its proper prefix
coincide, see in Figure 16.
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Figure 17: Structuring of the EPC in Figure 12(a): (a) the orgraph and its MDT, (b)–(c)
structured versions of the EPC

Figure 17(a) shows the orgraph of the proper prefix in Figure 16, along
with its MDT. The MDT contains no concurrent primitive and, therefore, the
well-structured process model exhibiting given ordering relations exists. The
resulting structured model has a single source and single sink, and starts and
ends with gateways that encode instantiations and completions of the model,
as shown in Figure 17(b), which is the well-structured version of the EPC in
Figure 12(a). The figure also visualizes the process components: B1 and B2
are the components from Figure 12(b). Polygons P1 and P2 are synthesized
from modules L1 and L2, respectively, cf. the MDT. Finally, bonds B3 and
B4 correspond to modules C1 and C2, respectively. The gateways at the start
and at the end can be trivially removed through a post-processing step, thereby
yielding a structured multi-source and multi-sink EPC model, cf. Figure 17(c).
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7. Evaluation

The proposed structuring method has been implemented as a tool, namely
bpstruct, publicly available at https://code.google.com/p/bpstruct/. Us-
ing this implementation, we conducted an empirical evaluation of the proposed
method with the aim of addressing the following questions in the context of a
repository of process models taken from commercial practice:

Q1. What proportion of unstructured process models are inherently unstruc-
tured and what proportion of models are structurable?

Q2. Is the exponential worst-case complexity of the structuring method (par-
ticularly the unfolding method) problematic in practice?

Q3. In theory, the structuring method may lead to node duplication. To what
extent does this duplication lead to larger process models?

Q4. The method for structuring multi-source models may lead to disconnected
models. How often does this phenomenon occur?

In the following, we present the dataset which we used for the evaluation
(Section 7.1), and discuss answers to the questions proposed above (Section 7.2),
which we derived from the evaluation.

7.1. Dataset
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V

e3 e4

V

V

b

e5

(a)

e1 e2
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e3 e4

V

b
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Figure 18: Structuring of a homoge-
neous and rigid

For the evaluation, we used the SAP Refer-
ence Model [47] – a collection consisting of 604
EPCs capturing business processes supported
by the SAP R/3 enterprise system. In the first
stage, we discarded models that are already
structured and models that contain cycles. We
also discarded models that contained or joins
in a rigid, since these models cannot be pro-
cessed by the proposed method. Note that
or joins at the boundaries of bonds do not
pose any problem to bpstruct, since bonds
are separated from rigids during the computa-
tion of the RPST, and bpstruct only needs to
deal with rigids; a description of the execution
semantics of or gateways can be found in [48].
After this pre-processing, we were left with
78 models, 40 of which are sound. As many
models in the SAP Reference Model are multi-source and multi-sink, we checked
soundness using the technique proposed in Section 6.3. Coincidently, each of the
40 sound models contained exactly one rigid component. Thus, the number of
rigids that needed to be structured was also 40.

Among these 40 rigids, 6 are homogeneous xor rigids, 19 are homogeneous
and rigids, and 15 are heterogeneous rigids. All homogeneous xor rigids can
be structured, since the only source of inherent unstructuredness in acyclic
process models stems from concurrency. On the other hand, all but one of the
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19 homogeneous and rigids are inherently unstructured. The only and rigid that
is structurable is a case of a rigid that contained redundant transitive arcs; the
core structure of the rigid is summarized in Figure 18(a). The arc going from the
and split after event e2 to the and join after event e4 is redundant and, thus,
can be removed; in doing so, the split and the join become redundant and can
also be removed. The structured version of the EPC in Figure 18(a) is proposed
in Figure 18(b). All other 18 homogeneous and rigids contain the structure
depicted in Figure 5. Finally, among the 15 heterogeneous rigids, only 3 are
inherently unstructured. The complete characterization of the dataset employed
for the evaluation is depicted in Figure 19. From the total of 604 models, we
did not address 31 EPCs with cycles and 96 EPCs with or gateways; these are
depicted by empty circles in the figure. We plan to address these cases as a part
of our future work.
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With ORs 
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Structurable 
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Homogeneous AND

(1)
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Homogeneous AND

(18)

Heterogeneous
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Figure 19: Structural characterization of models in the SAP Reference Model

7.2. Results

With reference to question Q1 above, the evaluation suggests that unstruc-
tured homogeneous and rigids are highly prone to being inherently unstructured,
while heterogeneous rigids are prone to be structurable. With reference to
question Q2 above, Figure 20(a) plots the execution time relative to the size of
the input model. The figure also plots two trendlines of the linear regression
analysis: one for the heterogeneous and one for the homogeneous case. The plot
shows that, although in theory the complexity of the structuring algorithm is
exponential to the size of the input (due to the unfolding step – cf. Section 5),
this worst-case exponential complexity does not manifest itself in the dataset at
hand. The observed execution times are rather linear relative to the size of the
input models. In the given dataset, we found one rigid component that contained
2 xor gateways intermingled with 8 and gateways. The structuring algorithm
took 1.5 seconds to execute for this model and concluded that the model is
inherently unstructured. These 1.5 seconds were spent mainly on the unfolding
and the pruning steps. Putting this case aside, the average execution time for
the remaining models is 12 ms (standard deviation: 7ms). These execution times
exclude the time to compute the RPST, but this step has a linear complexity.

With reference to question Q3, Figure 20(b) plots the size of the structured
process models relative to the size of the original models (only for models that
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Figure 20: Experimental results

were originally unstructured but not inherently unstructured). The figure shows
that – except for the model with a homogeneous and rigid (located slightly below
the diagonal), the size of the structured model is at least equal and in most
cases larger than that of the input model. Specifically, we observed that the size
of the output model (measured in terms of number of nodes) was up to 1.625
times that of the input models. On average, the size of the models produced
by bpstruct was 1.22 times the size of the input model (standard deviation:
0.2). These results emphasize the fact that structuring a process model involves
a tradeoff between modularity and size. Please note that duplication results
were obtained for flat models, i.e., models without subprocesses. Structured
models may also contain duplicates of whole process components, which leaves
opportunities for modularization, e.g., by employing techniques like [29].

Finally, with reference to question Q4, we found that 15 of the 19 structurable
models led to disconnected structured models. Two of the rigids whose struc-
tured versions were connected originally had a single source, while two of them
were multi-source. And as expected, all rigids whose structured versions are
disconnected were originally multi-source models. This result suggests that when
structuring multi-source models, one is likely to obtain disconnected models. This
phenomenon is specific to EPCs. It does not occur in the case of multi-source
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BPMN models, since in BPMN, the multiple disconnected fragments would be
re-connected with a common event-driven or parallel event-driven gateway.

8. Conclusion

We conclude that a sound acyclic process model is inherently unstructured, if
and only if its RPST contains a rigid process component for which the modular
decomposition of its orgraph contains a concurrent primitive. In all other
cases, Algorithm 1 applied to every rigid process component of a process model
constructs an FCB-equivalent well-structured process model. We have thus
provided a characterization of the class of well-structured acyclic process models
under fully concurrent bisimulation, and a complete structuring method, which
has been implemented in the bpstruct tool.

Our method can also be used to structure models with SESE cycles, even if
these cycles contain unstructured components. In this case, the unstructured
components and the cycles are in different nodes of the RPST. However, the
proposed method cannot deal with models with arbitrary cycles. We believe that
the notion of the proper complete prefix unfolding, cf. Definition 5.4, can be
applied to unfold all cycles in the model to the point where structuring can be
addressed as a combination of the compiler techniques for structuring sequential
programs and the approach proposed in this article. We plan to investigate this
option in future work. Also, the proposed method does not apply to models
with or joins and complex gateways, except in the case where these gateways
appear at the boundaries of a bond. When or joins are present inside a rigid, the
structuring problem becomes conceptually similar to the problem of transforming
a process model with or joins into FCB-equivalent process model with xor and
and gateways only, so that the unfolding techniques can be applied. Dealing with
complex gateways would require different techniques since complex gateways
lead to unsafe models, i.e., ones that have more than one token in the same place.
Future work will aim at addressing these and other restrictions of the presented
technique, such as the ability to deal with BPMN models with attached events
(both interrupting and non-interrupting ones).

As mentioned in Section 1, one of the motivating reasons for structuring
process models is to be able to apply existing analysis techniques which only work
for structured process models. For example, existing techniques for calculating
Quality of Service (QoS) properties of business processes [8] are only applicable
for structured process models. In a separate work [49], we have shown how
these techniques can be extended to models with arbitrary topology by applying
bpstruct in conjunction with additional post-processing steps to deal with
inherently unstructured rigid components.

Another potential benefit of structuring a process model is that the resulting
structured model may be easier to comprehend and less error-prone to maintain
thanks to its higher degree of modularity [5]. However, the empirical evaluation
reported in this article has put into evidence that the structured process models
produced by bpstruct are often larger than the original ones (by an average
of 22% in the case of the SAP Reference Model). Larger models are generally
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more difficult to comprehend and maintain than smaller models. An interesting
direction for future work is to conduct empirical evaluations with end-users in
order to determine whether the complexity reduction due to the modularity of
the structured model outweighs the increase in complexity due to the larger size
of the structured model.
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